
ASIST Level 2 Training for EO-1
 ASIST RDL Development

 Using an Editor

 Read the User’s Guide

 I&T and Flight Operations

 Building the Database

 Syntax Verification

 Limit Definitions

 Database Control

 Display Page Development

 Notes on Using STOL

 Directory Structure

ASIST RDL Development
• RDL is an acronym for Record Definition Language

• The RDL structure is similar to C data definitions with RDL unique
keywords

• A record is the name given to a definition structure in the ASIST
command and telemetry database (i.e. individual mnemonic
definitions). Records are defined using the keyword CLASS for
commands, and PACKET for telemetry.

• Each database item must have a unique primary mnemonic. Sub-
mnemonic keywords for commands may be re-used . A common sub-
mnemonic field example is: ON or OFF.

• APID (Application Identification) is the common name given to a text
file created to define a series of records. Formal naming requirements
for these files for EO-1 are: eo1cmdxxx.rdl, eo1tlmxxx.rdl, and
eo1pstlmxxx.rdl, where xxx is the APID in HEX format.

1

ASIST RDL Development (cont.)

• APID assignments are controlled by the C&DH FSW.

• ASIST has 4 database areas: system, configured, global, and local.
• The System area MUST be left alone, these are the files used to create the

STOL runtime environment.

• The Configured area is read only - files may be copied from configured to a
read/write area. This area is reserved to provide configuration control of
database files.

• The Global and Local areas are common to all workstations in an NFS lab
environment.

• The PRIVATE area of ASIST is unique to each particular workstation.

• RDL examples are provided in the global RDL directory as part of the
ASIST environment for commands and telemetry.

• The example files are named: eo1tlmex.rdl, eo1cmdex.rdl, and
eo1pstlmex.rdl. These files may be copied and used for cut and paste
revisions.

2

Using an Editor

• ASIST is a UNIX based platform, therefore all ASCII characters are
represented in both cases. i.e. “A” does not equal “a”.

• All mnemonic names WILL BE in UPPER CASE letters.

• All RDL file names will be in lower case letters.

• All STOL procedure names will be in lower case letters.

• All DISPLAY page names will be in UPPER CASE letters.

• DO NOT mix and match cases!

• ASIST comes with an “emacs” editor installed. An EDT emulator for
the right numerical keypad is also provided. Database editing can be
initiated from the STOL command line or in any X-term window.

• An emacs tutorial is available by starting the emacs editor in an X-term
window (emacs anyname), then using the emacs HELP pull down
menu to start the tutorial.

3

Using an Editor (cont.)

• The standard editor tool is entered from the STOL command line. At
the STOL prompt type: dbedit <return> to edit RDL files, or prcedit
<return> to edit STOL procedures.

• The standard editor uses a LISP interactive menu. Most new users of
UNIX may find the X-term emacs approach easier to utilize and
understand for creating new files.

• Some warnings on the hazards of using UNIX:

– NEVER use the UNIX delete command ‘rm’ with the asterix.

– NEVER assume files have been copied to a directory. Verify the copy
command was successful.

– UNIX only saves 2 copies of a file: the newest and last versions.

– UNIX will allow you to copy over a file or replace a file without
saving the older version.

4

Read the User’s Guide
• The ASIST User’s guide is an excellent source for reference. The

Guide is best used interactively and is available on-line. The ASIST
User’s guide is just that. All questions will not necessarily be
answered

• ASIST is largely a User defined system. Familiarity with UNIX
standards and tools (such as grep, awk, ls, and man) make for a better
user. Do NOT attempt to learn how to use these tools during I&T
activities.

• ASIST operates using a COTS system called SAMMI. SAMMI is a
GUI system used to display telemetry mnemonics to the user. SAMMI
allows for importation of BMP, GIF or XBM files as static objects.
The User’s guide only details how to use SAMMI, not how to program
with SAMMI.

• The strength of the system is its flexibility.

5

I&T and Flight Operations

• ASIST is being groomed to be a complete I&T system by the MIDEX
program.

• EO-1 is using ASIST as an end to end I&T and FOT system also.
Additions to the database for use and clarification of data for Flight
Operations is encouraged. A prime example is the keyword TVER.
TVER is used for end-to-end command verification. TVER is
included in the eo1cmdex.rdl examples and should be included in
command mnemonic definitions, but will not necessarily be expanded
on by the I&T team. EO-1 I&T will primarily rely on COP-1 and
telemetry response for end-to-end command verification.

• Other examples: header information on packet definitions shall be
complete enough to determine packet source and downlink time
requirements, STOL procedure header information will be sufficient
enough to determine hazards, constraints, and warnings by a person
unfamiliar with the procedure.

6

Building the Database
• There are 3 compilers used to build the complete I&T database:

Command compiler, Telemetry compiler, and a STOL compiler.
NOTE: The use of the STOL compiler is addressed in a later section.

• To compile an RDL file into the database, the APID file name must be
included in the user_cmd.rdl or user_tlm.rdl file. Most user’s will find
it easier to select a file name (such as fswlabcmd.rdl) that always
remains in user_...rdl instead of continuously updating the user_...rdl
files. Edit the file fswlabcmd.rdl to add and delete individual APID
packet definitions. This will help prevent over writing of files with the
same names or accidentally deleting required file names from the lab’s
database.

• The RDL compiler builds binary code output for the ASIST system in
the area that the user is logged in under. These binary files may not be
copied upwards (i.e. local to global, or global to configured).

• ASIST is designed so that the source code will reliably build the same
output database (binary code) each time the same source code is used.

7

Building the Database (cont.)

• Creating the RDL database binary file is a 2 step process comprised of
a build followed by a load. The build process creates files named
cmd.db or tlm.db and takes ~4 minutes to complete. The load process
copies the ‘‘new” binary database file over the “old” binary file and
causes the old file to cease to exist (unless saved in another directory).
An error in compilation will prevent a *.db file from being created.

• The ASIST STOL environment must be exited and re-started to use the
new version of the database. Each individual workstation in an NFS
environment must be re-started to use the “new” database.

• The commands for creating a database are: DBCMPCMD for
command RDLs (user_cmd.rdl), and DBCMPTLM for telemetry
RDLs (user_tlm.rdl). These directives may be typed in at a UNIX
prompt or at the STOL command line.

• The commands to load the database are DBLOADCMD and
DBLOADTLM.

8

Syntax Verification
• Each compiler can be run in a syntax mode which does not create a

binary output file, but does verify that the syntax required to build a
database is valid.

• Error and warning messages are provided to the user after completion
of a syntax check or an actual database build.

• Run syntax checks fairly often to find where bad code exists and
prevent its re-use.

• A syntax check must be run from a UNIX prompt. Syntax checks may
be run against all RDL files, or individual RDL files. The user should
be in the ‘rdl’ directory to perform a syntax check. The commands to
perform a syntax check are: ‘ocmd eo1cmdxxx.rdl’ for command
RDLs, or ‘otlm eo1tlmxxx.rdl’ for telemetry RDLs.

• The syntax checker will not catch every error in the database. A
database report should be generated and reviewed for accuracy. This
is the best way to catch typographical errors in certain fields.

9

Limit Definitions

• Limit definitions are imbedded into the RDL file structure. Not ALL
telemetry items require limit definitions.

• Limits are structured as follows: RED HIGH, YELLOW HIGH,
YELLOW LOW, and RED LOW.

• RED limits are defined as limits which will cause potential damage to
the spacecraft on orbit (or during test).

• YELLOW limits are WARNINGS that a potentially hazardous
condition may occur.

• A Yellow limit shall be defined so that there is time for corrective
action prior to reaching the RED limit condition.

• RED and YELLOW limits are managed ON and OFF by using STOL.

• Limit checking is hierarchical: limit checking must be enabled for an
individual ASIST workstation (CHECK ON), limit checking for the
packet must be enabled (LIM ON P0xx), and limit checking for
individual telemetry points must be enabled (LIM ON SCIERRQ)

10

Limit Definitions (cont.)

• Limit definitions can be inclusive or exclusive for boundary definitions

• Limit checking generates an event message every time a packet is
received by ASIST with an out of limit (OOL) item. A STOL event
message is generated for each OOL item’s state.

• RED limit violations HALT STOL procedures on receipt. Action must
be taken to clear the RED condition prior to continuation of the
nominal STOL process (i.e. CHECK OFF, LIM OFF mnemonic, or
correct the state which caused the limit violation).

• YELLOW limit violations show as event messages in the STOL
environment, but do NOT halt STOL procedure execution.

• Page display fields change to RED or YELLOW for an item, provided
that the DDO quality field is enabled for Run Time Annotations (RTA)

• The DDO quality field also shows packet staleness states (telemetry
item never received or not received in predetermined time period).
The staleness time is defined in the RDL telemetry Packet structure .

11

Database Control

• Development of RDL files, STOL procedures, and telemetry PAGE
displays is done by various engineers in different lab locations. The
mechanism to prevent conflicts between labs is the EO-1 Project
Database Management Plan [AM149-0048(155)]. Be familiar with the
EO-1 database requirements plan prior to performing development
work on deliverable items. Be familiar with: mnemonic naming
conventions, STOL procedure naming conventions, display page
naming conventions, and APID responsibilities.

• Control of database deliverables for individual labs is the responsibility
of the lab manager.

• Not establishing a database management function for a lab
environment can lead to using up disk space on the workstation.

12

Display Page Development
• Pages are developed using a graphical interface tool to link database items

(Dynamic Display Objects - DDOs) to a display window, commonly called a
telemetry page.

• This graphical tool is SAMMI. SAMMI is being used to support the Space
Station and Space Shuttle programs for NASA in addition to being used for
ASIST.

• The page editor is active when the editor’s interactive window is present.

• There are four basic DDO types: dynamic(text), integer, real, and time.
Format control of these four types is the responsibility of the page developer.

• Graphic tools are extensive. Some ASIST standard items: panel meters,
toggle buttons, bar graphs, X Y plots, and sliding scale meters

• Page editing is most quickly performed by copying in an aggregate style page
and changing internal mnemonic definition read keys, page layout and text
fields.

• Once a DDO field type is selected, it can be changed to be another type (i.e.
change a DYNAMIC (TEXT) to an INTEGER or a TIME field)

13

Notes On Using STOL

• STOL provides the primary interface between the Test Conductor and
the EO-1 Spacecraft.

• STOL is a series of user generated scripts which are developed to
perform spacecraft functional verification.

• ASIST foreign directives are defined by execution of STOL scripts.
Special commands are currently defined as foreign directives.

• The ASIST runtime environment is defined by execution of STOL
scripts. The ASIST user will define functions used in the STOL
environment by use of a STOL script named “user_startup.prc”. This
script is the holding place for items which are defined at system
initialization and should be common to all ASIST EO-1 labs.

• STOL procedures must be compiled to create executable files. At the
STOL window type “STOL_COMPILER your_proc_name” to
compile a procedure. The compiler will provide a summary of errors
when completed. The output of the compiler is an executable
procedure.

14

Directory Structure

• ASIST requires that source code files be located in the correct
directory. The directory structure for management of ASIST files is
listed here:

– DB - contains binary database files, spacecraft event message file(s),
and configuration files for the ASIST, FEDS, and associated GSE

– IMAGE - holding directory for FSW tables, images, and patches

– RDL - contains command and telemetry source code

– PRC - contains STOL procedures

– SAM - contains SAMMI telemetry page displays

– Note that for an NFS system, all directories are common to all
machines.

• On opening an X-term window, the user is placed in the private
directory. The private area is unique to each individual workstation
and may be used by as desired by the responsible engineer(s).

15

Topics Not Covered by This Training

• Specific Details on Database Construction

• Technical Details on Telemetry and Command Processing

• Technical Details on Telemetry Page Development

• Directives to Control FEDS and the DHDS

• ASIST Directives for Physical Channel Control & Management

• Local Archives versus DHDS Archives

• Standard Data Format Units (SFDUs), COP-1, and CCSDS formats

• Primary Workstation Command Screening

• Project message files

• Further information is available at http://rs733.gsfc.nasa.gov/ASIST

• ASIST is good for you!!

